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Key facts behind financial crisis

”the crisis [...] was caused by: widespread failures in financial regulation, [...]

dramatic breakdowns in corporate governance [...]; explosive mix of excessive

borrowing risk [...]; key policy makers ill prepared for the crisis [...]”
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Statistical answers to financial crisis

Available via multivariate time series analysis aimed at exploring co-variations and
interconnection structures among financial markets.

Focus on Rt = [r1,t , . . . , rV ,t ]
T , t ∈ T ⊂ <+

• VAR models (Longstaff, 2010)

• VEC models (Gentile and Giordano, 2012)

• Bayesian Stochastic Volatility models (Kastner et al., 2013)

• LAF models (Durante et al., 2013)

• Dynamic Matrix Factorization (Sandoval and De Paula, 2012)

Main Findings: useful overviews on the temporal and geo-economic changes in

world financial markets, showing how high volatility phases are directly linked with

increasing levels of interdependence.
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As friends moving together −→ financial networks

Financial networks provide insight into the factors driving market behavior. Focus
on the sequence of V × V (in our application V = 22) dynamic adjacency
matrices Yt , t ∈ T , measuring similarities among national stock market indices.

Co-movement as relational data (using quarter log-returns from Yahoo Finance)

• yij,t = yji,t = 1 −→ ri,t > 0 and rj,t > 0, or ri,t < 0 and rj,t < 0

• yij,t = yji,t = 0 −→ ri,t > 0 and rj,t < 0, or ri,t < 0 and rj,t > 0

Responce Co-movement network Yt
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Including time-varying predictors using GDELT

Aim: Learn the effect of substantial increments in material and verbal cooperation
on co-movements.

Definition of binary predictors:

1 Focus on the subset of important
relations. (IsRootEvent)

2 Difference between number of
cooperation and conflict events
among each couple of countries
and time. (QuadClass)

3 Compute standardized first
differences.

4 ‘Substantial’: increment greater
than the mean of all standardized
first differences at time t.

Material Cooperation Zm,t
2005 first quarter 2008 third quarter 2013 first quarter
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Verbal Cooperation Zv ,t

2005 first quarter 2008 third quarter 2013 first quarter
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Bayesian nonparametric longitudinal network model

Aim: provide a quantitative overview on the dependence structure among the
main financial markets during the global financial crisis and estimate the effects of
verbal and material cooperation efforts on such relationships.

yij,t | πij(t) ∼ Bern(πij(t)) t ∈ T , (1)

independently for each i = 2, . . . ,V and j = 1, . . . , i − 1, with

πij(t) =
1

1 + e−sij (t)
, sij(t) = µ(t) + xi (t)T xj(t) + zTij,tβ(t), (2)

• µ(t): baseline process quantifying the overall propensity to form links

• xi (t) = [xi1(t), . . . , xiH(t)]T : vector of latent coordinates of i − th unit

• zij,t = [zijm,t , zijv,t ]
T : edge specific indicator vector for the presence of a

substantial material and verbal cooperation among units i and j , respectively

• β(t) = [βm(t), βv (t)]T : corresponding dynamic coefficients
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Model interpretation

S(t) = µ(t)1V 1T
V︸ ︷︷ ︸

1

+X (t)X (t)T︸ ︷︷ ︸
2

+βm(t)Zm,t + βv (t)Zv,t︸ ︷︷ ︸
3

(3)

1 Overall measure of denseness common to all units.

2 Measure of similarity in the latent space → units with latent coordinates in the
same direction are more similar.

3 Allows the proximity between units i and j at time t to depend also on
predictors in a manner that varies smoothly with time.

Interpretation

Latent coordinates may represent investors expectations and unexpected inflation,
respectively, favoring indices of countries with features in the same directions to
co-move, and countries with opposite features to move in different directions. We
also allow the presence of a significant increment in verbal or material cooperation
relations among pairs of countries to further increase or decrease the co-movement
probability proportionally to its corresponding time-varying coefficient.
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Prior specification

µ(·) ∼ GP(0, cµ), with cµ(t, t′) = exp(−κµ||t − t′||22)

xih(·) ∼ GP(0, τ−1
h cX ), with cX (t, t′) = exp(−κX ||t − t′||22),

independently for i = 1, . . . ,V and h = 1, . . . ,H, with τ−1
h a shrinkage parameter

τh =
h∏

k=1

ϑk , ϑ1 ∼ Ga(a1, 1), ϑk ∼ Ga(a2, 1), k ≥ 2.

βm(·) ∼ GP(0, cm), with cm(t, t′) = exp(−κm||t − t′||22)

βv (·) ∼ GP(0, cv ), with cv (t, t′) = exp(−κv ||t − t′||22)

Posterior computation: simple Gibbs Sampler exploiting the recently developed

Pòlya-gamma data augmentation scheme (Polson et al., 2013).
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Baseline process → financial contagion effects

United States Housing Bubble Global Financial Crisis European Debt Crisis

µ(t)
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• Change of regime at the burst of the United States housing bubble

• Peaks of the overall co-movement propensity in correspondence to the global
financial crisis and the European sovereign-debt crisis (financial contagion)
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Some (fancy) estimated financial networks
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(1) Aggregated Network (2) World Financial Crisis Network (3) Greek Debt Crisis Network

1 Geo-economic proximity among countries manifested through tighter networks

2 Dense network during the global financial crisis → financial contagion effect

3 Greece shows low connection with all the other countries except Spain and Italy
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Time-varying coefficients → new insights

United States Housing Bubble Global Financial Crisis European Debt Crisis

βm(t)

βv(t)
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(1) (2) (3)

1 βm(t) > βv (t): in line with the “originate and distribute” banking model which
stimulated large capital exchanges inflating the network of material relations

2 βm(t) < βv (t): proliferation of meetings between governments and financial
institutions, and the lack of material funds to invest in foreign markets

3 βm(t) ≈ βv (t): important material bailout investments by the Eurozone
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Conclusion

The network lens

Developing statistical models to flexibly learn time-varying network structures,
while inferring the effects of additional variables, is a key issue in many applied
domains. It is increasingly common to have data available on dynamic networks
and related node features. In addition, viewing data through a network lens can
add substantial new insights, as we have illustrated in our finance application.

Future challenges we are working on (and GDELT represents a great data mine)

• Clustering and borrowing of information across different networks

• Structural equation models for network data

• Multivariate time series of networks

• Scalable methods for huge networks

Questions?
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