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1. Introduction

For centuries, key pillars of the philosophy of science like Francis Bacon and David Hume, have

stressed that scientific progress occurs through the development of consistently accurate, replica-

ble, and falsifiable predictive models. Building on these argument, numerous scholars of political

conflict, including Choucri [1974], Singer and Wallace [1979], Beck et al. [2000], Bueno de Mesquita

[2002], and Ward et al. [2010], have similarly stressed the importance of predictive models for two

main reasons. First, as Beck et al. [2000], Weidmann and Ward [2010], and others convincingly

argue, predictions are vital for the development of theories about the causes of violence, since the

most rigorous way to test whether an empirical model is actually reflecting a real-world data gen-

erating process, or simply fitting “noise”, is to measure its forecast accuracy.1 Second, accurate

conflict forecasts can be tremendously useful in the real world – they can help peacekeepers allocate

scarce resources, inform Non-governmental Organizations (NGOs) on potential hot-spots to avoid,

and even provide speculative investment opportunities. Although the majority of empirical studies

of conflict continue to focus on “explanation” – primarily in the form of interpreting coefficients

and standard errors established through in-sample testing – a smaller though considerable number

papers and projects exist with the explicit goal of building dynamic forecasts of future levels of

violence. Likewise, the goal of this article is to build a forecasting model, though not for theory-

building or hypothesis-testing, but rather to create a proof of concept tool for real-time, policy

relevant decision making.

Extant empirical forecasting studies focusing on domestic conflict range tremendously in terms

of data, methods, and scope. The most coarse studies build forecasts at that state-year level using

primarily structural variables like GDP per capita, ethnic diversity, and infant mortality (see Gurr

and Harff [1996], King and Zeng [2001], Fearon and Laitin [2003], and Goldstone et al. [2010]), which

Date: Version 0.8 : April 12, 2013.
1I use “prediction” and “forecast” interchangeably throughout this article.
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are useful in some contexts but unable to build predictions beyond the state-year unit of analysis.

The majority of studies attempting to build empirical forecasts of violence use more fine grained,

event data coded at the daily and sometimes local level, as these data allow scholars to capture more

dynamic patterns of violence and ultimately build more detailed forecasts than those using state-

year, structural data. Historically, scholars building empirical forecasting models of violence have

used either machine-coded (like the Kansas Event Dataset (KEDS) (see Schrodt [1990], Integrated

Conflict Early Warning System (ICEWS) (see O’Brien [2010], 10 Million International Dyadic

Events Dataset (see King and Lowe [2004])) or human-coded event data datasets (like ACLED

(see Raleigh et al. [2010]) built form open source text, with the majority of scholars utilizing

the machine-coded option. Recently, however, WikiLeaks has provided an alternative data set of

conflict events that previously required security clearance from the United States Government to

access, but have subsequently been illegally obtained and distributed to the public. The logical

question, then, is which of these sources of data is more appropriate for this study? Given the goal

of this article, an ideal dataset would contain the following five key attributes:

(1) Broad spatial coverage: Global coverage is preferable to one with country or region specific

coverage as it would enable a forecasting model to be built for any global location.

(2) Density: Predictive algorithms tend to perform better with more data, meaning that many

fine-grained events is preferable to fewer larger scale events.

(3) Geo-coding: Sub-state, geo-spatial predictions require sub-state, geo-coded events.

(4) Accuracy: The data should accurately reflect the events as they occur in reality in order to

build relevant predictions.

(5) Future availability in real-time: If the data are not accessible in the future in real or near

real-time, then it becomes highly difficult to build actionable predictions.

Each of the five attributes above is a necessary condition to building nuanced predictions on

a global scale, and none of the major existing datasets listed above meet all the conditions. For

example, WikiLeaks is highly accurate since it is based on first hand accounts, but limited in

spatial coverage and not likely readily available in the future. ICEWS, KEDS, and the 10 Million

International Dyadic Events datasets are capable of real-time updates, but lack the ability to geo-

code, and relying on human-coded datasets makes it difficult, if not impossible to update in (near)

real time or maintain on a global scale because human coding is slow.
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Recently, however, a breakthrough dataset called the Global Dataset of Events, Location, and

Tone (GDELT) was released, contained over 200 million that are machine-coded in near real-time

(e.g. daily) based on open source data. Most importantly to this study, GDELT is the first machine-

coded dataset capable of performing sub-state geo-coding, providing specific latitude and longitude

coordinates for each observation. Thus, GDELT is the first dataset to meet all five criteria above,

and is currently the only suitable source of data for building temporally and geo-spatially nuanced

forecasts of violence on a global scale in real time.

This is the first study to ever use open-source, machine-coded event data to build forecasts of

political violence at a sub-state level of geospatial aggregation. Since the process of aggregating

conflict events into sub-state units based on latitude and longitude is currently time and computa-

tionally intensive, doing so on a global scale exceeds the scope of a article. Thus, I focus on fore-

casting conflict in sub-state geospatial units in a single country: Afghanistan. I choose Afghanistan

for two reasons. First, there is dense political violence across a long time-frame (2001-2012) with

considerable variation at local levels. Second, Mangion-Zammit et al. [2012] have demonstrated

the ability to build forecasts with the WikiLeaks data, meaning that to the extent it is possible at

all to build temporally and geo-spatially nuanced forecasts of political violence using open source,

machine-coded event data, it should be feasible in Afghanistan.

Although I focus primarily on building predictions one-month in advance at the district-month

unit of analysis (Afghanistan’s smallest administrative unit, N=317), I also build forecasts at the

province-month (N=32) and the country-month (N=1) level, which provides a rudimentary test

of the effects of geo-spatial aggregation on forecast accuracy. Empirically, I use an autoregressive

fractionally integrated moving average (ARFIMA) model, which builds forecasts of levels of material

conflict one-month-in-advance that consistently outperforms a naive model assuming that the level

of violent in a location during a month will be the same as it was in the same location in the

previous month. The ARFIMA model performance decrease relative to the naive model at each

additional level of geo-spatial aggregation, suggesting further justification for the use of fine-grained

geo-spatial analyses. Additionally, I implement two logical extensions to the univariate ARFIMA

model, first by building and modeling additional features, and second by incorporating exogenous

drug price data to ARFIMA model, though neither enhance predictive accuracy. The remainder

of this article provides a review of relevant literature, details my research design and ARFIMA

forecasting model, discusses two logical extensions, and lastly concludes.
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2. Literature Review

To facilitate this review of relevant literature, I organize studies that forecast domestic political

violence into the three general types of data that they use: machine-coded, human-coded, and

WikiLeaks.

2.1. Machine-coded data. Although a large number of studies utilize machine-coded event data

(see Appendix A), a much smaller subset of these studies build forecasts: Schrodt and Gerner [1997]

use discriminant analysis to predict conflict phases in the Levant, Schrodt [1999] uses HMMs to

forecast conflict in southern Lebanon, Pevehouse and Goldstein [1999] use time-series to predict

events in the Serbia-Kosovo conflict, Schrodt and Gerner [2000] forecast unique clusters of conflict

in the Levant from 1979 to 1997, Schrodt [2000] uses HMM’s to forecast conflict dynamics in

the Levant form 1979 to 1997, Bond et al. [2004] forecast conflict in Indonesia, Shellman [2004b]

forecasts conflicts between government and dissident actors in Chile and Venezuela, Brandt and

Freeman [2005] use Bayesian time-series to forecast dynamics between the United States, Israel, and

Palestine, Schrodt [2006] forecasts conflict in the Balkans using HMMs, Shearer [2006] uses HMMs

to forecast conflict between Israel and Palestine, Bagozzi [2011] uses zero-inflated count models

and D’Orazio et al. [2011] use sequence analysis to forecast domestic conflict in 29 Asian countries,

and Brandt et al. [2011] employ Markov Switching Bayesian Vector Autoregression (MS-BVAR) for

forecast domestic and inter-state conflict in the Levant in 2010. Although these and other scholars

demonstrate the ability to generate accurate forecasts of when and between whom conflict will

occur in the future using open-source, machine-coded event data, they have been unable to predict

where this conflict will occur at a sub-state level since none of the relevant machine-coded event

data datasets provided geo-location information prior to GDELT.

2.2. Human-coded data. A number of geo-located, human-coded event data datasets exist that

could allow researchers to build forecasts of violence at specific sub-state geographic units. For

example, the Armed Conflict Location and Event Dataset (ACLED), which provides over 75,000

geo-coded violent events with (both atomic and composite) for approximately 60 countries, includ-

ing all of Africa, and other, conflict-prone countries throughout the world (see Raleigh et al. [2010]),

Daly [2012] provides a dataset with 7,729 geo-coded acts of violence in Colombia from 1964-1984,

Schneider et al. [2012] presents the Konstanz One-Sided Violence Event Dataset (KOSVED) with

21,458 attacks against civilians in Bosnia, Urdal and Hoelscher [2012] introduces a dataset of 4,003
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events occurring in 55 major cities in Asia and sub-Saharan Africa from 1960 to 2008, and Salehyan

et al. [2012] introduce the Social Conflict in Africa Database (SCAD), which contains 7,200 events

of political unrest occurring in 47 African countries from 1990-2010.

Despite the geospatial nuance of these datasets, it is somewhat surprising that only Weidmann

and Ward [2010] uses one of the aforementioned datasets (ACLED) in order to build predictions,

whereas dozens of other articles dimly focus on explanation. Weidmann and Ward [2010] use

ACLED’s Bosnia dataset in order to build a model that predicts a binary measure of whether a

given municipality-month in Bosnia. In total, 4,796 municipality months exists (109 municipalities

form March 1992 to October 1995), of which 301 experienced an ACLED conflict event and are

treated as a “1”. They build a model based on exogenous variables (population, ethnic diversity,

borders, and mountains) as well as various endogenous lags of the dependent variable, and utilize a

Markov Chain Mote Carlo (MCMC) technique to estimate a logistic regression which is then used

to calculate predictions in a rigorous out-of-sample framework, which I discuss in greater detail in

Section 4.2.

Despite making major theoretical and empirical contributions to the study of political violence,

the fact that the only study to build out-of-sample forecasts using human-coded event data (e.g.

Weidmann and Ward [2010]) did so for a conflict that ended five years prior to the release of the

study underscores the slow, tedious nature of building human-coded datasets that makes them

extremely difficult to update sufficiently close to real time as to build policy-relevant forecast

actually for the future.

2.3. WikiLeaks data. On July 25, 2010, WikiLeaks publicly released the majority of classified

documents comprising both the Afghan War Diary (containing 91,731 documents) and the Iraq

War Log (containing 391,832), which contain classified documents that provide a highly detailed

account of events occurring in Afghanistan and Iraq from January 2004 through December 2009.

Additionally, in 2010, the United States government declassified subsections of the Afghan War

Diary and the Iraq war log, called Significant Acts (SIGACT). Although both the WikiLeaks

and SIGACT datasets have become difficult to obtain, a number of academic studies have been

published that empirically model these data for both Iraq and Afghanistan. Like studies discussed

in Section 2.2, the majority of studies using the WikiLeaks and SIGACT data focus on explanation,

rather than prediction.
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For example, Berman et al. [2011] analyze the effects of sub-state level unemployment data

for 297 district-quarters (3 quarters for 99 districts) for Iraq and 2,160 district-months (6 months

for between 363 and 365 districts) for Afghanistan on levels of violence using the SIGACT data;

Weidmann and Salehyan [2011] use the SIGACT data to analyze the effects of the U.S. surge in

Iraq on levels of violence in 85 neighborhoods in Baghdad; O’Loughlin et al. [2010] use hotspot and

cluster analysis to compare the Afghan War Diaries data to ACLED’s Afghanistan data; Linke et al.

[2012] model violence dynamics between the U.S-led coalition forces and insurgent by analyzing

301,374 violent events aggregated at the three-day, 30-by-30 second grid-cell level, and although

the authors do assess their model’s predictive accuracy, this is done only using in-sample findings as

opposed to a proper in-sample/out-of-sample break, meaning that the model is not actually building

predictions. Among studies drawing on the WikiLeaks or SIGACT datasets, Mangion-Zammit et al.

[2012] is the only to actually build out-of-sample forecasts. To do so, Mangion-Zammit et al. [2012]

first use the WikiLeaks data to calculate the number of violent events at the province-month level in

Afghanistan from 2004 to 2009, which serves as the in-sample training set. Second, they construct

and train a point-process model on the 2004-2009 training data. Third, they build future predictions

at the province-year level for 2010, based purely on information from 2004-2009. Since WikiLeaks

only provides data through 2009, Mangion-Zammit et al. [2012] evaluate their model’s predictive

accuracy based on data provided by the Afghan NGO Safety Office (ANSO), and find that 62.5%

of actual levels of violence fall within 95% confidence intervals of predicted levels.

Although these studies apply innovative methods to address interesting questions, they highlight

two major shortcomings to working with WikiLeaks-style of data. First, even when it can be

acquired, it does not provide real or near-real time updates. As a result, Mangion-Zammit et al.

[2012] needed to use a different data source to obtain data from 2010 since WikiLeaks only covered

2004-2009. Second, all of the studies discussed in Section 2.3 focus on either Iraq or Afghanistan

since WikiLeaks only provided dense data for those countries, which clearly means that WikiLeaks

data is unsuitable to build predictions for any other states in the world.

The research design I outline in the following sections using the GDELT dataset not only over-

come the shortcomings WikiLeaks-style data, but also those of the extant literature relying on

human-coded and pre-GDELT machine-coded datasets. In the following section, I outline how I

use GDELT to build state- and sub-state levels of political conflict in Afghanistan and discuss my

forecasting approach.
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3. Research Design

3.1. Constructing material conflict counts. As previously mentioned, Afghanistan is spatially

divided into 32 provinces and 317 sub-provincial-level districts. Using the GDELT data in conjunc-

tion with GIS software, I calculate the number of material conflict events that occur from February

1, 2001 through April 30, 2012 between all actors in each month at three (country, province, and

district) geo-spatial levels of analysis. To accomplish this, I first select all material conflict events

for which either the source or target actor’s primary affiliation (i.e. the first three characters of their

actor identification) was with Afghanistan. I use a version of the GDELT data that has duplicate

entries eliminated, as my goal in this article is to forecast actual the occurrence of events, rather

than the perception or intensity of events. This step generates 139,915 material conflict events,

each of which contains a specific latitude and longitude coordinate reflecting where the event oc-

cured. Next, using shape files and GIS software, I calculate the the number of events that occur

within each district and province in each month. I choose to use the month as my level of temporal

aggregation because this provides sufficient variation throughout the time-series while reducing the

level of noise that is present at daily or weekly levels. Largely for those reasons, the monthly level

aggregation is the most commonly used in the relevant literature, employed by Goldstein [1991],

Schrodt [1997], Schrodt and Gerner [1997], Schrodt and Gerner [2000], Schrodt and Gerner [2001],

Shellman [2004a], Shellman [2004b], Gleditsch and Beardsley [2004], Schrodt [2007], Brandt et al.

[2008], Weidmann and Ward [2010], Ward et al. [2010], Shellman et al. [2010], Brandt et al. [2011],

D’Orazio et al. [2011],and Mangion-Zammit et al. [2012]. District- and province-months with no

material conflict events are assigned a “0”. This results in 43,746 district months, 4,352 province

months, and 136 country months.2

[INSERT FIGURE 1 HERE]

Figure 1 provides a visual overview of the data, illustrating changes in the number of material

conflict events from 2001 to 2012 that occur in each district-year.

4. Forecasting Approach

In this section, I outline my forecasting approaches using the univariate data comprised solely

of the counts of material conflict events. To facilitate discussion, I detail my forecasting approach

2This was done with substantial assistant form John Bieler as well as Josh Steven, who completed all geo-spatial
aggregation using GIS.
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as applied to the district-month level-of-analysis, though the approach is identical at the province-

month and country-month levels-of-analysis as well. Since the structure of the data is time-series

cross sectional at highly nuanced unit of analysis – i.e Afghani districts – I am unable to find

appropriate exogenous variables to help predict future levels of material conflict.3 As such, the

district-month dataset contains 317 univariate time-series of the count of material conflict events

at the district-month level, and I reflect the number of material conflict events occurring in a dingle

district month with the notation Districtit.

Since accurate forecasts are so useful across academia, government, and private sectors, there

are many different empirical approaches to building forecasts. No one-size-fits all model exists,

and it is impossible to know ahead of time which algorithm will generate the greatest degree of

predictive accuracy. Due primarily to the large number of observations and amount of information

(i.e. location, actors, date, etc.) contained in most event data datasets, including machine-coded,

human-coded, and WikiLeaks data, researchers have applied a large number of different forecasting

models.

D’Orazio et al. [2011] report that models forecasting domestic conflict largely fall into three

general categories: time series (Shellman [2004a], Shellman [2007], Harff and Gurr [2001]), vector

auto regression (VAR) (Pevehouse and Goldstein [1999], Goldstein [1992], Freeman [1989], Brandt

et al. [2011]), and HMMs (Schrodt [1999], Bond et al. [2004], Shearer [2006], Schrodt [2000], and

Schrodt [2006], Petroff et al. [2012]). Additionally, other studies using event data have employed

additional methods, such as linear models (Weidmann and Ward [2010], Fearon and Laitin [2003],

Gurr and Harff [1996]), clustering algorithms (Schrodt and Gerner [2000] , and point-process mod-

eling (Mangion-Zammit et al. [2012]). Even after choosing a base algorithm, a number of choices

must still be made regarding tuning parameters. For example. In addition, a number of techniques,

like bagging and boosting can be applied to most of these algorithms (see Schrodt et al. [2012] for

a discussion of these techniques in the context of political violence forecasting). As if that did

not provide enough choices, a number of approaches combine multiple algorithms into ensemble

methods, such as bayesian model averaging (BMA) (Montgomery et al. [2012]).

Despite the nearly infinite number of plausible forecasting approaches, the structure of my data is

highly constraining for two main reasons. First, it is a univariate time series, meaning that it does

3Exogenous variables on employment and drug prices exist for select districts for select months, but neither variable
is available with sufficient coverage to include in an empirical forecasting model at the district-month level. I discuss
this further in Section 6.2
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not contain exogenous covariates. Most of the methods above specifically designed for datasets

with many covariates and are less relevant for my data. Second, my data is temporal. This

restricts how I am able to divide my training and test set, since that training set must exclusively

contain observations that preceded the test set. This greatly inhibits re-sampling techniques like

boosting as a way of enhancing predictive accuracy. In the following section, I outline a forecasting

model that achieves highly accurate predictions using a univariate time-series, discuss my out-of-

sample forecasting framework, and detail how I build a benchmark to assist with evaluating forecast

accuracy.

4.1. The ARFIMA model. To build forecasts with the univariate time-series, I implement an

Autoregressive Fractionally Integrated Moving Average (ARFIMA) model, which models all uni-

variate time-series (317 at the district-level, 32 at the province level, and 1 at the country-level)

independently of each other. Though this is the first time an ARFIMA model has been used

to forecast political conflict, a number of studies have demonstrated its ability to generate more

accurate and consistent forecasts than other time-series models across various substantive fields.

For example, Siew et al. [2008] demonstrate that an ARFIMA model consistently outperforms a

traditional ARIMA model in forecasting air pollution rates, Chu [2009] generates more accurate

forecasts of tourism levels in Asia with an ARFIMA model than with seasonal ARIMA (SARIMA)

models, Barkoulas and Baum [2006] illustrates how ARFIMA models outperform other autoregres-

sive models in forecasting U.S. monetary indices, and Bhardwaj and Swanson [2006] show that the

ARFIMA model outperforms both ARIMA models and GARCH models in forecasting returns in

the S&P500.

To introduce the ARFIMA model, first consider an ARIMA (p,d,q) model for a univariate time

series X(xt, xt−2, xt−3, ..., xt−n) with d=0, which we can write as:

(1) xt = ω + ε+

p∑
i=1

βixt−i +

q∑
i=1

αiεt−1

where ω is a constant, xt−i is the lagged dependent variable, εt−i is the lagged error, εt is the

current error, and βi and αi are estimated parameters. When a time-series is non-stationary, first-

differencing or “integrating” the series can help achieve stationarity. This generates a new time

series, ∆xt, calculated by the following formula:
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(2) ∆xt = xt − xt−1

Thus, we can convert the ARIMA(p,d,q) model with d=0 to an ARIMA(p,d,q) model with d=1

by replacing the x characters with ∆x, as done in the following formula:

(3) ∆xt = ω + ε+

p∑
i=1

βi∆xt−i +

q∑
i=1

αiεt + εt−i

Although the ARIMA(p,d,q) model is among the most commonly used time-series models and

has been used successfully to forecast with event data (see Shellman [2007]), it is rigid in that d must

be an integer. The key innovation of the ARFIMA model is that it allows for d to take on any real

number, which need not be an integer (hence the name “fractionally integrated”). Mathematically,

Granger and Joyeux [1980] demonstrates that by allowing d<1, the ARFIMA model is able to

efficiently account for a long memory process, which occurs when the time-series tends to revert to

a historical mean. Importantly, the ARFIMA model is capable of accounting for the long memory

process even without increasing the number of p and q lags.

To implement a flexible ARFIMA(p,d,q) model, I utilize the ‘arfima’ package in r, which auto-

matically establishes values for the p, d, and q parameters of a univariate time series by determining

the estimates for these parameters that maximize the likelihood function. This means that the re-

searcher does not need to pre-specify the number of autoregressive components, moving average

components, or degree of fractional integration. I treat each cross-section as a unique time-series,

meaning that I train and build forecasts with the ARFIMA model one district and one province

at a time through a looping function.4 The ‘forecast’ function in the ‘arfima’ package allows the

user to build a prediction N units into the future and provides a mean prediction along with 95%

confidence intervals. To establish predictions, I use the mean of the one-month-ahead prediction

rounded to the nearest integer. Figure 2 demonstrates the use of the ‘arfima’ package to build a

prediction of the number of material conflict events in Bughran province in April, 2009 using data

from February 2001 through March 2009. The prediction in Figure 2 provide the mean (the circle)

as well as 90 and 95% confidence intervals, indicated by the light and darker vertical shading.

4Many districts have long periods of consecutive months with “0” material conflict events, which causes the ‘arfima’
package to crash. To allow the ‘arfima’ package to properly converge, I generate a random number from a uniform
distribution from 0 to .1 for each district-month, and add that value to the count of material conflict events.
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[INSERT FIGURE 2 HERE]

4.2. Out-of-sample framework. In order to calculate out-of-sample performance accuracy of the

ARFIMA model, I utilize the same approach implemented by Weidmann and Ward [2010], which

I implement on my data according to the steps outlined below, using the district-level model as an

example:

• Train the model on an initial in-sample set containing all data from February 2001 until

April 2008.

• Predict (and store) the number of material conflict events for May 2008 (i.e. a one-month-

ahead out-of-sample forecast.

• Incorporate May 2008 into the in-sample set.

• Retrain the model on this new in-sample set, which now includes all data from February

2001 to May 2008.

• Predict (and store) the number of material conflict events for June 2008.

• Repeat until a final prediction is made for April 2012 (i.e. the last month in the data set),

using a model trained on February 2001 through March 2012.

This results in 48 out-of-sample, one-month-ahead forecasts for each of the 317 municipalities.

At the province-month level, this approach yields 48 out-of-sample, one-month-in-advance forecasts

for each of the 32 provinces, and at the country-month level, this results in 48 one-month-in-advance

forecasts for Afghanistan as a whole.

4.3. Establishing a benchmark. Since this is the first paper to build nuanced predictions of po-

litical conflict in Afghanistan at the monthly level, no existing appropriate benchmark of predictive

accuracy exists. Without an appropriate benchmark, it is difficult to assert whether an alternative

predictive model is performing well. The literature provides two plausible approaches to assessing

how well a predictive model is performing in the absence of other models attempting to predict

the same outcome. First, Gurr and Lichbach [1986] provides a strong theoretical argument called

“the conflict persistence model”, which suggests that in the absence of an existing benchmark, it

is logical to build a naive model that assumes conflict in the future will be the same in a given

location as it is today. Second, Mangion-Zammit et al. [2012] reports the percentage of times that

the true number of violent events fall within the 95% and 99% confidence intervals of predicted

levels of violence. I choose to follow Gurr and Lichbach [1986]’s approach, and construct a naive
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model that predicts the number of material conflict events in Districtit = Districtit−1, for three

reasons.

First, Mangion-Zammit et al. [2012]’s approach tells actually tells us little about a model’s

predictive accuracy because it does not penalize for large confidence intervals. Imagine that the

true number of violence events occurring in Districtit is 75. Now, consider two models. Model 1

generates a prediction for the number of violent events in Districtit with 95% confidence intervals

at 12 and 162, while Model 2’s prediction for Districtithas 95% confidence intervals at 68 and

74. Mangion-Zammit et al. [2012]’s approach would report that Model 1 is accurate and Model

2 is inaccurate, when in reality, it is difficult to imagine a scenario in which we would prefer

Model 1’s prediction to that of Model 2. Second, and directly related to the first point, is that

Gurr and Lichbach [1986] approach generates a specific point prediction as a benchmark, which

creates greater flexibility in assessing model performance. For example, Gurr and Lichbach [1986]’s

approach allows me to calculate Mean Absolute Error (as detailed below), which is impossible

using Mangion-Zammit et al. [2012]’s approach. Lastly, in many forecasting contexts (especially

predicting civil conflict at the state-year level), the Gurr and Lichbach [1986] approach achieves

almost perfect accuracy – countries at peace tend to stay at peace and countries at conflict tend to

stay at conflict. This naive approach often works so well that it occasionally outperforms far more

sophisticated forecasting models.

For example, Montgomery et al. [2012] introduce Bayesian Model Averaging (BMA) approach,

and demonstrate how they are able to leverage the predictions of three separate models in order

to build accurate forecasts that outperform all of the three component models. Montgomery et al.

[2012] report that their BMA technique outperforms all of the three component models, accurately

predicting 13 of 35 conflict onsets (“1’s”) and all 313 of the 313 non-onsets (“0’s” ) in their dataset.

While these may appear strong at first, Gurr and Lichbach [1986]’s naive benchmark approach

accurately predicts 33 of the 35 conflict onsets and 310 of the 313 non-onsets, which is a dramatic

improvement over the not only the BMA, but also the three component predictive models. Based

on this, I assume that any model that consistently outperforms the naive t=t-1 assumption to be

accurate.

4.4. Calculating accuracy. For each of the 48 months that iteratively serve as the out-of-sample

test, I calculate the error rates for the naive model (naive error) and the ARFIMA model (arfima error

rate), which reflect the MAE across the N cross-sections (N=317 for the district-month model, N=32
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for the province-month model, and N=1 for the country-month model) according to the Formula

(4) and Formula (5).

(4) naive errorm =

N∑
i=1

| naive predictioni,m − true counti,m |

N

(5) arfima errorm =

N∑
i=1

| naive predictioni,m − true counti,m |

N

These formulas result in a naive error and arfima error rate for the district-level, province-level,

and country-level models for each of the 48 months that serve as the test-month allowing me to

determine the extent to which the ARFIMA model outperforms the naive model across the three

levels of geo-spatial aggregation (district, province, and country) in the following section.

5. Results

Table 1 provides the arfima error rate, naive error rate, and a TRUE/FALSE label indicating

whether the ARFIMA forecasts are more accurate on average across all 317 districts for the given

month.

[INSERT TABLE 1 HERE]

As Table 1 indicates, the ARFIMA model outperforms the naive model in 47 out of 48 of the

out-of-sample months. Additionally, the ARFIMA model reduces the sum of the 48 monthly MAE’s

by over 16%. Taken together, these are highly impressive finding, especially when considering that

naive models (that assume t=t-1) of conflict tend to perform well in forecasting.5

[INSERT TABLE 2 HERE]

Table 2 provides the arfima error rate, naive error rate, and a TRUE/FALSE label calcu-

lated from province-level geo-spatial aggregations, meaning that each of the 48 arfima error and

5A potential critique of these results is that I do not perform any rigorous external validity check, meaning that I may
simply be predicting the event-data generating process, rather than actual levels of violence. I believe that this is
not overly problematic for two main reasons. First, many other forecasting studies likewise rely exclusively on event
data and do not perform rigorous external validity checks, which has set a precedent that this is generally accepted
practice. Second, the anecdotal story discussed in article 1 serves as an informal external validity check that suggests
the GDELT data is accurate.
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naive error rates reflect their respective means across the 32 provinces. At the province-month

level, the ARFIMA does not perform as well as at the district-month level, but it still outper-

forms the naive model in 40 of the 48, or approximately 83% months that serve as the test month.

Furthermore, the ARFIMA model reduces the sum of the 48 month MAE by approximately 13%.

Even though the ARFIMA performs slightly worse at the province-level than the district-level, it

still achieves a respectable level of enhanced accuracy relative the the naive benchmark.

[INSERT TABLE 3 HERE]

Table 3 replicates Table 1 and Table 2, except it reflects the arfima error rate, naive error rate,

and the TRUE/FALSE label based on a single country-level forecast per month. Table 3 illustrates

that at the country-month level, the ARFIMA still outperforms the naive model, but does so at

a lower margin than at the district-month or province-month level. Of the 48 months that test

sample, the ARFIMA model outperforms the naive model 30 times, or 62.5%. Additionally, the

ARFIMA model generates a lower sum of MAE’s, but only by approximately 1%, which suggests

that the increase in predictive accuracy of the ARFIMA model at the country-month level may be

largely meaningless.

Across the district-, province-, and country-month forecasts, the key aspect of the ARFIMA

model is that it tends to build forecasts that are between the naive model forecast and a longer

term moving average. Exactly how much the ARFIMA model shifts forecasts away from the naive

forecasts and towards the longer term moving average varies based from by month and by cross-

section, but in effect, the ARFIMA acts like a smoothing function. Figure 2 visually demonstrates

this. The last observed number of material conflict events is approximately 280 in month 99,

meaning that the naive model would predict 280 events for the month 100. However, we can see

that the average number of material conflict events in the previous months is less than 280, so the

mean ARFIMA forecast (represented by the black dot) is less than 280. To the extent that the

ARFIMA model outperforms the naive model, it suggests that levels of future violence tend to

exhibit mean reverting characteristics.

6. Future directions

Although the ARFIMA model outlined above largely accomplishes the goal of this paper, in

this section I provide preliminary analysis of two logical extensions for the finding in the previous
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section: first, building features from the univariate time-series to allow for other types of predictive

algorithms; second, incorporating exogenous information, such as drug prices.

6.1. Building features and implementing an ensemble method. A common approach when

building forecasting models is to manipulate existing data in order to build additional features, or

covariates, which may uncover meaningful patterns in the data that are hidden in other variables.

In many contexts across disciplines, building additional features leads to enhanced predictive ac-

curacy. Note that building features can also decrease predictive accuracy because the additional

dimensionality increases the likelihood of over fitting a model. To overcome this, I employ the same

out-of-sample predictive framework as previously outline in Section 4.2.

Just like there there is no definitive way to pick the best forecasting algorithm, there are no

rules for constructing features. As such, I build 11 new features below, all from the univariate

time series, in an attempt to enhance predictive accurate beyond the univariate ARFIMA model

outlined in the previous section.

• 2 month MA = (countt + countt−1)/2

• 3 month MA = (countt + countt−1 + countt−2)/3

• 4 month MA = (countt + countt−1 + countt−2 + countt−3)/4

• 5 month MA = (countt + countt−1 + countt−2 + countt−3 + countt−4)/5

• 6 month MA = (countt + countt−1 + countt−2 + countt−3 + countt−4 + countt−5)/6

• ∆ 2 month MA = countt − 2 month MA

• ∆ 3 month MA = countt − 3 month MA

• ∆ 4 month MA = countt − 4 month MA

• ∆ 5 month MA = countt − 5 month MA

• ∆ 6 month MA = countt − 6 month MA

• monthly sum = the sum of all material conflict events occurring across all spatial units each

month

With these additional covariates, I build a number of additional predictive models following the

general approach in Section 4.2. Using the ‘glm’ package in r, I build predictions using linear models

comprised of various combinations of the 11 additional covariates above (all lagged one-unit) as well

as a one-unit lag of the dependent variable, trying both “gaussian” and “poisson” distributions. I

am unable to find a linear combinations of the covariates above (including the lagged dependent
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variable) capable of outperforming the naive benchmark at the district-month level in more than

35 out of the 48 district-months that serve as the out-of-sample set. Motivated by the enhanced

predictive accuracy of the approach in Montgomery et al. [2012], I also implement an ensemble

approach. To build an ensemble, I build use two component models, Model 1 and Model 2, which

are specified below and estimated using the ‘glm’ package in r with a gaussian distribution.6

Model 1

(6)

ˆDistrictit = β0 + β12 month MAi(t−1) + β23 month MAi(t−1) + β34 month MAi(t−1)

β45 month MA2i(t−1) + β56 month MAi(t−1) + β7monthly sumi(t−1) + β8Districti(t−1)

Model 2

(7)

ˆDistrictit = β0 + β1∆ 2 month MAi(t−1) + β2∆ 3 month MAi(t−1) + β3∆ 4 month MAi(t−1)

+ β4∆ 5 month MAi(t−1) + β5∆ 6 month MAi(t−1) + β7Districti(t−1)

Using these two models, I build an ensemble forecasting model according to the six steps below:

(1) Estimate two models on the same in-sample set as in Section 4.2, which contains all data

from February 2001 until April 2008, and generate predictions for these in-sample months

and store coefficient estimates

(2) Train the Ensemble model using the ‘glm’ function in R on the in-sample predictions from

Model 1 and Model 2 according to the formula below, and store coefficient estimates:

(8) Ensemble = ˆDistrictit = β0 + β1Model 1it + β2Model 2it

(3) Build predictions for May 2008 (i.e. one-month ahead out-of-sample forecast) for Model 1

and Model 2 by matrix multiplying the coefficient estimates from Step 1 and the covariates

for May 2008, which have been lagged one-month to simulate an actual prediction.

6Although the dependent variable is a count, predictions made with the ‘glm’ package using the gaussian distribution
consistently outperforms those build with the ‘poisson’ distribution.
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(4) Calculate and store an Ensemble prediction by matrix multiplying the predicted values for

Model 1 and Model 2 by their coefficient estimates from the Ensemble model trained on

the in-sample set in Step 3.

(5) Incorporate May 2008 into the in-sample set.

(6) Repeat Step 1 through Step 4.

(7) Repeat Step 1 through Step 6 until a final prediction is made for April 2012 (i.e. the last

month in the data set), using a model trained on February 2001 through March 2012.

This Ensemble model outperforms the naive benchmark in 33 out of 48 months. Although this

is not a terrible result, it does not approach the accuracy of the more straightforward, univariate

ARFIMA model discussed in the previous section. However, given the large number of predictive

algorithms and the infinite number of features that can be built from a univariate time-series,

scholars in the future may be able to build on my ensemble approach and build a model that

eventually outperforms the predictive accuracy of my straightforward ARFIMA model.

6.2. Incorporating drug prices. In addition to building features from the univariate time-series

as performed in the previous section, another way of potentially improving forecast accuracy is

to incorporate exogenous variables. Although a large number of studies have found empirical

relationships between many exogenous variables and political conflict, most operate at a state-year

level of analysis. Finding relevant exogenous variables at sub-annual and sub-state levels is far

more difficult. Even studies that do utilize fine-grained exogenous variables, like Weidmann and

Ward [2010] and Berman et al. [2011] face considerable limitations.

For example, Weidmann and Ward [2010] analyze future violence at the municipality-month

unit of analysis as a function of past violence as well as a set of exogenous variables comprised of

population, ethnic diversity, terrain, and whether the municipality is on an international border.

However, these exogenous variables vary cross-sectional (i.e. between municipalities) but not tem-

porally (i.e. from month-to-month for the same municipality), which reduces the extent to which

they can improve predictive accuracy. Additionally, Berman et al. [2011] collect unemployment

statistics at the province-month level for Afghanistan, Iraq, and the Philippines that do vary at

a province-month unit of analysis, but the difficulty in collecting such data limit their temporal

domain to just six months in the case of Afghanistan, which also inhibits their effectiveness at

enhancing predictive models. Therefore, an ideal set of exogenous variables would vary at a fine
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grained unit of analysis and span a long temporal range, but these are difficult to collect, especially

for conflict-prone countries like Afghanistan.

For Afghanistan, one potential source of an exogenous variables come from the Afghanistan

Opium Survey 2012, which is published by the United Nations Office on Drugs and Crime (UN-

ODC).7 This document provides considerable information at the district-level regarding opium and

cannabis prices as well a dataset containing average opium prices at the country-month unit of anal-

ysis from September 2004 through March 2012, as illustrated below in Figure 3. Unfortunately,

similarly complete time-series data are not publicly provided at the province- or district-month

level.

[INSERT FIGURE 3 HERE]

Given the number of empirical studies that either theoretically suggest or empirically demonstrate

relationships between drug prices and conflict (see Palmer [1994], Buhaug and Gates [2002], Ross

[2003], Ross [2004], and Collier et al. [2004]) it seems reasonable that the addition of opium prices

as an exogenous variable may enhance predictive accuracy at the country-month unit of analysis.

To test this, I repeat the six steps outlined in Section 4.2 in order to compare the predictive

accuracy of the naive model with the original univariate ARFIMA model outlined in Section 4 and

Section 6.2 as well as the ARFIMA model that includes the exogenous opium data, which I call

the ARFIMA opium model. Since the opium price data spans a smaller temporal range than my

GDELT-derived data on political violence, I set September 2004 through March 2010 as the initial

in-sample training set, and use April 2010 through March 2012 as the out-of-sample test months.

As Table 3 indicates, the ARFIMA model outperforms the Naive model in 18 of the 24 months that

serve as the out-of-sample test months. Interestingly, the ARFIMA opium model only outperforms

the Naive model in 17 out of 24 months. Although this suggests that the inclusion of the drug

price data may not actually enhance predictive accuracy, it does not rule out the possibility that

more nuanced data on drug prices at the province- or district-level of analysis could lead to more

accurate predictions.

7. Conclusion

7This document is available at:
www.unodc.org/documents/afghanistan/New%20Country%20Programme/ORAS report 2012.pdf
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This paper is the first to build temporally and geo-spatially nuanced forecasts of future levels of

violence relying exclusively on open-source, machine coded event data. The release of the GDELT

dataset made this article possible. Before GDELT, the leading open-source, machine-coded datasets

did not provide location information, and the hand-coded datasets that did provide location infor-

mation were too sparse for rigorous empirical forecasting. The Afghan War Diary that was released

as past of WikiLeaks provided a notable exception, but this data is not only of questionable legality

but also unlikely to be replicable for future conflicts, meaning that forecasting models built from

WikiLeaks data may lack real-world applicability moving forward.8

Using nothing but GDELT data, I build an ARFIMA model capable of providing forecasts at

the district month level that nearly always outperform a naive model that simply assumes that

the level of conflict tomorrow will be the same as it is today. My empirical findings suggests three

major takeaways: First, it appears that it is feasible to build accurate and nuanced predictions at

a sub-state level using only open source, machine-coded event data. Second, the level of forecast

accuracy decreased as the degree of geo-spatial aggregation increases: forecasts at the district-

month (N=317), province-month (N=32) and country-month (N=1) level outperform their naive

benchmarks in 47 out of 48, 40 out of 48, and 30 out of 48 month, respectively. It appears that

patterns in violence that are discernible at fine-grained levels of geo-spatial aggregation (i.e. the

district-level in Afghanistan) become increasing noisy a higher levels of geo-spatial aggregation.

This strong suggests that researcher attempting to build empirical forecasts of violence should use

as finely grained geo-spatial aggregations as possible. Third, the fact that the ARFIMA model

tends to outperform the naive model suggests that patterns of violence tend to be mean reverting.

This means that when we see a major spike in violence during a specific period of time in a specific

sub-state location, we should expect violence in the following time period to be more subdued.

Conversely, when we see a sudden drop in the level of violence, we should expect a rebound-effect.

Moving forward, a number of logical extensions to this article exist. First, researchers could use

the GDELT data to further explore whether the mean-reversion properties present in the levels of

violence in Afghanistan hold across other countries. Mean-reversion properties, as first identified by

Galton [1886] in his seminal analysis of human heights, is a common and influential property across

other substantive fields like biology and economics. Determining whether local levels of violence in

8Standard questioning when applying to positions require top-secret clearance is whether you have accessed and used
Wikileaks data.
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other states also tend to be mean-reverting could be a major theoretical advancement to the study

of conflict dynamics.

Second, Section 6.1 provides a basic framework for building additional features from the uni-

variate time series and using these features to construct alternative forecasting algorithms to the

ARFIMA model. Although my attempts at enhancing predictive accuracy through this approach

were unsuccessful, other scholars find greater success by building additional features and experi-

menting with other predictive algorithms. Similarly, the inclusion of additional exogenous variables,

such as drug prices at finer grained spatial coverage than the country-level data modeling in Section

6.2, terrain, or measures of reflecting potential geo-spatial correlation (i.e. a count of the number

of conflictual events occurring in neighboring districts or provinces) may also be helpful.

Third, since GDELT provides event data for all countries in the world (as opposed to WikiLeaks,

which only provides detailed data for Afghanistan) researcher could apply a similar forecasting

model to that outlined in this article to build geo-spatially and temporally nuanced forecasts of

future levels of violence any number of countries with ongoing domestic conflicts, like India or the

Democratic Republic of the Congo.

Lastly, since the GDELT data is updated daily, the forecasting approach outlined in this article

could be implemented in near real-time. This could provide real-world guidance to a host of

potential benefactors, ranging from military leaders hoping to more efficiently allocate resources,

to Afghani businessmen trying to identify the safest routes to transport goods. Overall, I hope

that this articles seres as a foundation for further forecasting efforts at fine-grained temporal and

geo-spatial scales.
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Figure 1. The Number of Material Conflict events per Afghani District from 2001
to 2012

8. Appendix
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Figure 2. One-month Forecast of the of Material Conflict Events in Bughran
District using ‘arfima’ package, with mean, 90%, and 95% confidence intervals.
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Figure 3. Average Farm-Gate Prices for Dry Opium in Afghanistan, September
2004-March 2012
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Table 1. Assessing Accuracy at the District Level

m month arfima error naive error arfima error < naive error
1 May 2008 2.73 3.59 TRUE
2 June 2008 2.75 3.21 TRUE
3 July 2008 3.76 4.41 TRUE
4 August 2008 2.40 3.66 TRUE
5 September 2008 2.58 3.13 TRUE
6 October 2008 3.51 3.60 TRUE
7 November 2008 2.24 2.87 TRUE
8 December 2008 1.71 2.58 TRUE
9 January 2009 2.72 2.63 FALSE
10 February 2009 2.11 2.53 TRUE
11 March 2009 2.53 3.11 TRUE
12 April 2009 2.43 2.85 TRUE
13 May 2009 3.58 4.02 TRUE
14 June 2009 2.85 4.02 TRUE
15 July 2009 3.56 4.07 TRUE
16 August 2009 5.50 6.25 TRUE
17 September 2009 4.15 5.00 TRUE
18 October 2009 4.18 4.79 TRUE
19 November 2009 3.38 4.09 TRUE
20 December 2009 3.07 3.09 TRUE
21 January 2010 2.50 3.62 TRUE
22 February 2010 3.82 4.11 TRUE
23 March 2010 3.37 4.15 TRUE
24 April 2010 1.66 1.70 TRUE
25 May 2010 1.99 2.12 TRUE
26 June 2010 2.02 2.25 TRUE
27 July 2010 1.77 2.09 TRUE
28 August 2010 3.63 4.06 TRUE
29 September 2010 3.28 3.28 TRUE
30 October 2010 2.05 2.57 TRUE
31 November 2010 1.77 2.22 TRUE
32 December 2010 2.00 2.31 TRUE
33 January 2011 2.02 2.44 TRUE
34 February 2011 1.91 2.34 TRUE
35 March 2011 1.89 2.18 TRUE
36 April 2011 3.47 4.03 TRUE
37 May 2011 2.91 3.64 TRUE
38 June 2011 2.32 3.07 TRUE
39 July 2011 3.06 3.60 TRUE
40 August 2011 2.64 3.30 TRUE
41 September 2011 3.02 3.47 TRUE
42 October 2011 1.97 2.79 TRUE
43 November 2011 2.32 2.68 TRUE
44 December 2011 1.81 2.10 TRUE
45 January 2012 2.21 2.42 TRUE
46 February 2012 2.09 2.41 TRUE
47 March 2012 2.81 3.08 TRUE
48 April 2012 2.98 3.58 TRUE

Total: May 2008 - Apr 2012 129.76 155.07 47 TRUE, 1 FALSE
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Table 2. Assessing Accuracy at the Province Level Level

m month arfima error naive error arfima error < naive error
1 May 2008 16.16 23.69 TRUE
2 June 2008 22.34 21.53 FALSE
3 July 2008 29.16 33.63 TRUE
4 August 2008 21.13 27.69 TRUE
5 September 2008 15.38 17.69 TRUE
6 October 2008 24.16 24.09 FALSE
7 November 2008 12.78 18.59 TRUE
8 December 2008 6.91 14.59 TRUE
9 January 2009 18.03 17.06 FALSE
10 February 2009 12.69 15.53 TRUE
11 March 2009 18.84 22.5 TRUE
12 April 2009 11.00 15.53 TRUE
13 May 2009 28.75 30.41 TRUE
14 June 2009 21.69 28.50 TRUE
15 July 2009 31.91 31.22 FALSE
16 August 2009 40.75 44.25 TRUE
17 September 2009 21.31 28.22 TRUE
18 October 2009 36.44 36.16 FALSE
19 November 2009 21.56 32.49 TRUE
20 December 2009 21.34 19.31 FALSE
21 January 2010 18.19 26.91 TRUE
22 February 2010 23.63 27.88 TRUE
23 March 2010 35.38 36.16 TRUE
24 April 2010 19.00 10.38 FALSE
25 May 2010 12.94 14.66 TRUE
26 June 2010 14.38 17.13 TRUE
27 July 2010 13.47 14.59 TRUE
28 August 2010 32.03 33.00 TRUE
29 September 2010 8.75 19.66 TRUE
30 October 2010 12.25 12.91 TRUE
31 November 2010 12.81 13.94 TRUE
32 December 2010 11.75 14.75 TRUE
33 January 2011 14.34 16.13 TRUE
34 February 2011 17.13 17.53 TRUE
35 March 2011 12.94 16.25 TRUE
36 April 2011 26.22 31.66 TRUE
37 May 2011 21.19 27.19 TRUE
38 June 2011 12.81 18.56 TRUE
39 July 2011 20.25 25.56 TRUE
40 August 2011 20.29 24.03 TRUE
41 September 2011 24.19 26.69 TRUE
42 October 2011 14.97 19.41 TRUE
43 November 2011 16.72 20.63 TRUE
44 December 2011 12.75 14.97 TRUE
45 January 2012 14.88 16.34 TRUE
46 February 2012 14.31 15.97 TRUE
47 March 2012 21.72 24.24 TRUE
48 April 2012 93.09 91.66 FALSE

Total: May 2008 - Apr 2012 1,004.56 1,151.50 40 TRUE, 8 FALSE
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Table 3. Assessing Accuracy at the Country Level Level

m month arfima error naive error arfima error < naive error
1 May 2008 52 94 TRUE
2 June 2008 462 393 FALSE
3 July 2008 474 410 FALSE
4 August 2008 358 426 TRUE
5 September 2008 96 238 TRUE
6 October 2008 383 277 FALSE
7 November 2008 5 81 TRUE
8 December 2008 135 231 TRUE
9 January 2009 293 204 FALSE
10 February 2009 39 25 FALSE
11 March 2009 156 78 FALSE
12 April 2009 51 23 FALSE
13 May 2009 709 629 FALSE
14 June 2009 393 444 TRUE
15 July 2009 455 309 FALSE
16 August 2009 845 754 FALSE
17 September 2009 135 227 TRUE
18 October 2009 220 311 TRUE
19 November 2009 235 417 TRUE
20 December 2009 484 336 FALSE
21 January 2010 633 693 TRUE
22 February 2010 71 20 TRUE
23 March 2010 1,035 1,087 TRUE
24 April 2010 213 244 TRUE
25 May 2010 244 259 TRUE
26 June 2010 137 146 TRUE
27 July 2010 139 143 TRUE
28 August 2010 1,037 1,028 FALSE
29 September 2010 515 519 TRUE
30 October 2010 85 85 TRUE
31 November 2010 170 200 TRUE
32 December 2010 185 174 FALSE
33 January 2011 160 204 TRUE
34 February 2011 220 223 TRUE
35 March 2011 253 270 TRUE
36 April 2011 539 507 FALSE
37 May 2011 144 66 FALSE
38 June 2011 135 230 TRUE
39 July 2011 386 298 FALSE
40 August 2011 126 33 FALSE
41 September 2011 120 202 TRUE
42 October 2011 314 371 TRUE
43 November 2011 214 266 TRUE
44 December 2011 55 57 TRUE
45 January 2012 5 23 TRUE
46 February 2012 112 145 TRUE
47 March 2012 453 475 TRUE
48 April 2012 2,759 2,737 FALSE

Total: May 2008 - Apr 2012 16,439 16,612 30 TRUE, 18 FALSE


